❓Что делать, если распределение данных меняется со временем? Как это влияет на валидацию и Early Stopping
Когда данные со временем «плывут» (то есть меняется их распределение), фиксированный валидационный набор устаревает. В этом случае Early Stopping может остановить обучение в «лучшей» точке для старого распределения, но не для актуального.
🔍Что можно сделать
1. Обновлять или ротационно менять валидационный набор — Чтобы он отражал текущее состояние данных, а не прошлое.
2. Использовать скользящие метрики или онлайн-мониторинг — Особенно в потоковых системах: метрики качества считаются по «живым» данным, а не по статичному отрезку.
3. Переобучать или дообучать модель при обнаружении дрейфа — Если обнаружили drift, стоит не просто дообучить модель, а пересобрать или адаптировать её с учётом новых данных.
⚠️Подводный камень: Если валидация остаётся неизменной, вы можете не заметить, что модель перестала работать. Early Stopping в этом случае остановит обучение слишком рано или слишком поздно — и модель будет плохо обобщать на реальные данные.
❓Что делать, если распределение данных меняется со временем? Как это влияет на валидацию и Early Stopping
Когда данные со временем «плывут» (то есть меняется их распределение), фиксированный валидационный набор устаревает. В этом случае Early Stopping может остановить обучение в «лучшей» точке для старого распределения, но не для актуального.
🔍Что можно сделать
1. Обновлять или ротационно менять валидационный набор — Чтобы он отражал текущее состояние данных, а не прошлое.
2. Использовать скользящие метрики или онлайн-мониторинг — Особенно в потоковых системах: метрики качества считаются по «живым» данным, а не по статичному отрезку.
3. Переобучать или дообучать модель при обнаружении дрейфа — Если обнаружили drift, стоит не просто дообучить модель, а пересобрать или адаптировать её с учётом новых данных.
⚠️Подводный камень: Если валидация остаётся неизменной, вы можете не заметить, что модель перестала работать. Early Stopping в этом случае остановит обучение слишком рано или слишком поздно — и модель будет плохо обобщать на реальные данные.
Telegram’s stand out feature is its encryption scheme that keeps messages and media secure in transit. The scheme is known as MTProto and is based on 256-bit AES encryption, RSA encryption, and Diffie-Hellman key exchange. The result of this complicated and technical-sounding jargon? A messaging service that claims to keep your data safe.Why do we say claims? When dealing with security, you always want to leave room for scrutiny, and a few cryptography experts have criticized the system. Overall, any level of encryption is better than none, but a level of discretion should always be observed with any online connected system, even Telegram.
Start with a fresh view of investing strategy. The combination of risks and fads this quarter looks to be topping. That means the future is ready to move in.Likely, there will not be a wholesale shift. Company actions will aim to benefit from economic growth, inflationary pressures and a return of market-determined interest rates. In turn, all of that should drive the stock market and investment returns higher.
Библиотека собеса по Data Science | вопросы с собеседований from vn